Skip to content

Wasserlinse Datenpool

Da die Nutzung der Wasserlinse in Brasilien als Tiernahrung nicht weit verbreitet ist, hat der Agrarpolitische Dialog Brasilien-Deutschland (APD) diesen Datenpool zum Thema initiiert, damit der Zugang zu den Informationen an dieser Stelle gewährleistet werden kann.

Hier sind Publikationen über die Erfahrungen zur Initiative in Pernambuco innerhalb des ITDs in Brasilien veröffentlicht sowie einige Links zu wissenschaftlichen Publikationen über das Thema, die von Professor Dr. Klaus Appenroth zur Verfügung gestellt wurden.

Dieser Datenpool soll mit der Zeit vergrößert werden. Jeder, der zum Thema Wasserlinse etwas veröffentlicht hat oder an dem Thema forscht, ist willkommen, seine Informationen an dieser Stelle zur Verfügung zu stellen und die bestehenden Materialien zu nutzen. Bitte kontaktieren Sie uns hier.

Wissenschaftliche Artikeln auf Englisch



[1] Valorization of aquatic plant biomass resource to fortified biochar and paper pulp: A strategic approach towards closed-loop technologies, circular economy, and sustainability

Singh, P; Dhanorkar, M; Sharma, S. (2024) Resources Conservation and Recycling DOI10.1016/j.resconrec.2023.107385

[2] Inclusion of organic and inorganic extractive species improves growth, survival and physiological responses of GIFT fish reared in freshwater integrated multi-trophic aquaculture system

Shinde, SV; Sukhdhane, KS; Krishnani, KK; Rani, AMB; Pathak, MS; Chanu, TI; Munilkumar, S. (2024) Aquaculture DOI10.1016/j.aquaculture.2023.740346

[3] Heavy metals/-metalloids (As) phytoremediation with Landoltia punctata and Lemna sp. (duckweeds): coupling with biorefinery prospects for sustainable phytotechnologies

Rai, PK; Nongtri, ES. (2024) Environmental Science and Pollution Research DOI


[4] Phytoremediation: A Shift Towards Sustainability for Dairy Wastewater Treatment

Agrahari, S; Kumar, S. (2024) ChemBioEng Reviews DOI10.1002/cben.202300038



[5] Characterisation of a Spontaneous Mutant of Lemna gibba G3 (Lemnaceae)

Sarin, LP; Sree, KS; Bóka, K; Keresztes, A; Fuchs, J; Tyagi, AK; Khurana, JP; Appenroth, KJ. Plants (2023) DOI10.3390/plants12132525

[6] Survival Strategies of Duckweeds, the World’s Smallest Angiosperms

Ziegler, P; Appenroth, KJ; Sree, KS. (2023) Plants DOI10.3390/plants12112215

[7] Phytoremediation of toxic chemicals in aquatic environment with special emphasis on duckweed mediated approaches

Thakuria, A; Singh, KK; Dutta, A; Corton, E; Stom, D; Barbora, L; Goswami, P (2023) International Journal of Phytoremediation DOI10.1080/15226514.2023.2188423

[8] Duckweed: Research Meets Applications

Olah, V; Appenroth, KJ; Sree, KS. (2023) Plants DOI10.3390/plants12183307

[9] Impact of pharmaceutical industry wastewater on stress physiological responses of Spirodela polyrhiza (L.) Schleiden

Parveen, K; Kumari, R; Malaviya, P. (2023) Environmental Science and Pollution Research DOI10.1007/s11356-023-30729-9

[10] Textile wastewater phytoremediation using Spirodela polyrhiza (L.) Schleid. assisted by novel bacterial consortium in a two-step remediation system

Parihar, A; Malaviya, P. (2023) Environmental Research DOI10.1016/j.envres.2023.115307

[11] Waste removal efficiencies of floating macrophytes for restoration of polluted stream: An experimental analysis

Mahajan, B; Shastri, S; Londhe, S. (2023) Urban Science DOI10.3390/urbansci7010027

[12] Microbial population dynamics in Lemnaceae (Duckweed)-based wastewater treatment system

Singh, P; Jani, K; Sharma, S; Rale, V; Souche, Y; Prakash, S; Jogdeo, P; Patil, Y; Dhanorkar, MN. (2023) Current Microbiology DOI10.1007/s00284-022-03149-0

[13] Impact of mercury on photosynthetic performance of Lemna minor: a chlorophyll fluorescence analysis

Singh, H; Kumar, D; Soni, V. (2023) Scientific Reports DOI10.1038/s41598-023-39297-x

[14] Toxicity of malachite green on plants and its phytoremediation: A review

Sharma, J; Sharma, S; Soni, V. (2023) Regional Studies in Marine Science DOI10.1016/j.rsma.2023.102911

[15] Phytochemical profile, antioxidant and cytotoxic activities of aquatic weed Landoltia punctata (G. Mey.) Les & D.J. Crawford

Sujatha, E; Fatima, M. (2023) Annals of Phytomedicine DOI10.54085/ap.2023.12.1.33

[16] Anatomical features and antimicrobial activity of duckweed

Sil, SK; Gupta, S; Neela, FA. (2023) Bangladesh Journal of Botany DOI10.3329/bjb.v52i1.65241

[17] Sustainable Stress Management: Aquatic Plants vs. Terrestrial Plants

Sree, KS; Appenroth KJ; Oelmueller, R. (2023) Plants DOI10.3390/plants12112208



[18] Starch accumulation in duckweeds (Lemnaceae) induced by nutrient deficiency

Sree, KS; Appenroth KJ. (2022) Emirate Journal of of Food and Agricultura DOI10.9755/ejfa.2022.v34.i3.2846

[19] Phytoremediation of toxic chemicals in aquatic environment with special emphasis on duckweed mediated approaches

Acharya, S; Kishore, N (2022) International Journal of Phytoremediation DOI10.1080/15226514.2023.2188423

[20] Freshwater Macrophytes: A Potential Source of Minerals and Fatty Acids for Fish, Poultry, and Livestock

Kumar, G; Sharma, J; Goswami, RK; Shrivastav, AK; Tocher, DR; Kumar, N; Chakrabarti, R. (2022) Frontiers in Nutrition DOI10.3389/fnut.2022.869425

[21] Effect of Lemna minor supplemented diets on growth, digestive physiology and expression of fatty acids biosynthesis genes of Cyprinus carpio

Goswami, RK; Sharma, J; Shrivastav, AK; Kumar, G; Glencross, BD; Tocher, DR; Chakrabarti, R. (2022) Scientific Report DOI10.1038/s41598-022-07743-x

[22] Effect of Greater Duckweed Spirodela polyrhiza supplemented feed on growth performance, digestive enzymes, amino and fatty acid profiles, and expression of genes involved in fatty acid biosynthesis of juvenile Common Carp Cyprinus carpio

Shrivastav, AK; Kumar, G; Mittal, P; Tocher, DR; Glencross, BD; Chakrabarti, R; Sharma, J. (2022) Frontiers in Marine Science DOI10.3389/fmars.2022.788455

[23] Performance of chlorophyll a fluorescence parameters in Lemna minor under heavy metal stress induced by various concentration of copper

Singh, H; Kumar, D; Soni, V. (2022) Scientific Reports DOI10.1038/s41598-022-14985-2

[24] Role of metabolites in flower development and discovery of compounds controlling flowering time

Chakraborty, A; Chaudhury, R; Dutta, S; Basak, M; Dey, S; Schaffner, AR; Das, M.. (2022) Plant Physiology and Biochemistry DOI10.1016/j.plaphy.2022.09.002


[25] Duckweed biorefinery-potential to remediate dairy wastewater in integration with microbial protein production

Hemalatha, M; Mohan, SV. (2022) Bioresource Technology DOI10.1016/j.biortech.2021.126499



[26] History of discovery of the fastest growing angiosperm, Wolffia microscopica (Griff.) Kurz entwined with British India

Sree, KS; Maheshwari, SC; Appenroth, KJ; Khurana, JP (2021) Current Science 121: 724-726.

[27] Aquatic weed Spirodela polyrhiza, a potential source for energy generation and other commodity chemicals production

Patel, VR; Bhatt, N. (2021) Renewable Energy DOI10.1016/j.renene.2021.03.054

[28] Effect of cadmium on nutrients concentration in duckweed: a case of Lemna minor and Lemna gibba

Chaudhary, E; Sharma, P. (2021) Environmental Sustainability DOI10.1007/s42398-020-00155-5

[29] Effect of inclusion of different levels of duckweed (Lemna minor) on the performance of broiler chicken

Zaffer, B; Sheikh, IU; Banday, MT; Adil, S; Ahmed, HA; Khan, AS; Nissa, SS; Mirza, U. (2021) Indian Journal of Animal Research DOI10.18805/IJAR.B-4201

[30] Tolerance and decolorization potential of duckweed (Lemna gibba) to CI Basic Green 4

Singh, H; Raj, S; Kumar, D; Sharma, S; Bhatt, U; Kalaji, HM; Wróbel, J; Soni, V. (2021) Scientific Reports DOI10.1038/s41598-021-90369-2

[31] Utilization of eutrophicated Lemna minor for biosorption of acid blue dye

Prakash, P; Kumar, JA; Dhandapani, B; Vishnu, D; Sree, SH; Madhumeena, S; Lavanya, Y; Inbathamizh, L. (2021) Biomass Conversation and Biorefinery DOI10.1007/s13399-021-02024-5

[32] Lamellidens and Wolffia canopy improves growth, feed utilization and welfare of Labeo rohita (Hamilton,1822) in integrated multi-trophic freshwater aquaculture system

Nath, K; Munilkumar, S; Patel, AB; Kamilya, D; Pandey, PK; Sawant, PB. (2021) Aquaculture DOI10.1016/j.aquaculture.2020.736207